Estimation of housing prices in Ecuador using hedonic and geostatistical models: A comparative analysis

Main Article Content

Livino M Armijos-Toro
Sergio Castillo-Páez
Fernando Ortega

Abstract

This paper compares the results of two models, one hedonic and the other geostatistical, when obtaining housing price estimates in the Rumiñahui canton, Ecuador. In the first model, different parameterizations of the variables that make up the hedonic model are used to obtain the best predictions. For the geostatistical case, the predictions are composed of a trend function that depends on certain housing characteristics and a spatial error term, which is modeled from a residual variogram. The performance of each model is compared by an analysis of prediction errors from a validation data set. The results indicate a better performance for the geostatistical model, since it considers, in addition to certain inherent characteristics of each house, the effect of its spatial location on the selling price

Downloads

Download data is not yet available.

Article Details

How to Cite
Armijos-Toro, L. M., Castillo-Páez, S., & Ortega, F. (2022). Estimation of housing prices in Ecuador using hedonic and geostatistical models: A comparative analysis. Journal of Business and Entrepreneurial Studie, 6(2). https://doi.org/10.37956/jbes.v6i2.286
Section
Articles

References

Bover, O. and Velilla, P. (2001). Hedonic house prices without characteristic: the case

of new multiunit housing. Economic Studies, 73, Bank of Spain.

Camelo, M. and Campo, J. (2016). Analysis of housing policy in Bogotá: An approach

from supply and demand. Revista Finanzas y Política Económica, 8 (1), 105,122.

Chica-Olmo, Jorge and Cano-Guervos, Rafael & Olmo, Mario. (2007). Spatio-temporal

hedonic model and variographic analysis of housing prices. Geofocus: International

Journal of Geographic Information Science and Technology, ISSN 1578-5157, No.

, 2007.

Cressie, N. (1993). Statistics for Spatial Data. Rev. ed. John Wiley & Sons.

Chica, J. (1995). Spatial estimation of housing prices and locational rents. Urban studies,

(8), 1331-1344.

Chilès, J.P. and P. Delfiner (1999). Geostatistics: modeling spatial uncertainty. Wiley,

New York.

Derycke, P.H. (1983). Economía y Planificación Urbana. Instituto de Estudios de

Administración Local, Madrid.

Figueroa Benavides, E. and Lever D., G. (1992-06). Determinants of housing prices in

Santiago: A hedonic estimation. Available at

https://repositorio.uchile.cl/handle/2250/128244

Gaetan, C., & Guyon, X. (2010). Spatial statistics and modeling (Vol. 90). New York:

Springer.

Griliches, Z. (1971). Price indices and quality change. Harvard U.P. Cambrige.

INEC, (2018). Encuesta de Empleo Desempleo y Subempleo Urbano. Retrieved

www.ecuadorencifras.gob.ec/enemdu-2018/.

Journel, A.G. and C.J. Huijbregts (1978). Mining Geostatistics. Academic Press, New

York.

Lever, G. (2000). Determinants of housing prices in Santiago: A Hedonic estimation.

Paper. Santiago, Chile: Editorial.

Martínez, M. G., Lorenzo, J. M. M. M., & Rubio, N. G. (2000). Kriging methodology for

regional economic analysis: Estimating the housing price in Albacete. International

Advances in Economic Research, 6(3), 438-450.

Matheron, G. (1962). Traite de geostatistique appliquee, Tome I. Memories du Bureau

de Recherches Geologiques et Minieres, 14. Editions Bureau de Recherches

Geologiques et Minieres, Paris.

Montero, J. (2004). The average price of the square meter of free housing: A

methodological approach from the perspective of Geostatistics. Estudios de

Economía Aplicada, 22(3),675-693.

Wackernagel, H. (1998). Multivariate Geostatistics. 2nd ed. Springer, Berlin