Estimation of housing prices in Ecuador using hedonic and geostatistical models: A comparative analysis
Main Article Content
Abstract
This paper compares the results of two models, one hedonic and the other geostatistical, when obtaining housing price estimates in the Rumiñahui canton, Ecuador. In the first model, different parameterizations of the variables that make up the hedonic model are used to obtain the best predictions. For the geostatistical case, the predictions are composed of a trend function that depends on certain housing characteristics and a spatial error term, which is modeled from a residual variogram. The performance of each model is compared by an analysis of prediction errors from a validation data set. The results indicate a better performance for the geostatistical model, since it considers, in addition to certain inherent characteristics of each house, the effect of its spatial location on the selling price
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Licensing Agreement
This journal provides free access to its content through its website following the principle that making research available free of charge to the public supports a larger exchange of global knowledge.
Web content of the journal is distributed under a Attribution-NonCommercial-ShareAlike 4.0 International.
References
Bover, O. and Velilla, P. (2001). Hedonic house prices without characteristic: the case
of new multiunit housing. Economic Studies, 73, Bank of Spain.
Camelo, M. and Campo, J. (2016). Analysis of housing policy in Bogotá: An approach
from supply and demand. Revista Finanzas y Política Económica, 8 (1), 105,122.
Chica-Olmo, Jorge and Cano-Guervos, Rafael & Olmo, Mario. (2007). Spatio-temporal
hedonic model and variographic analysis of housing prices. Geofocus: International
Journal of Geographic Information Science and Technology, ISSN 1578-5157, No.
, 2007.
Cressie, N. (1993). Statistics for Spatial Data. Rev. ed. John Wiley & Sons.
Chica, J. (1995). Spatial estimation of housing prices and locational rents. Urban studies,
(8), 1331-1344.
Chilès, J.P. and P. Delfiner (1999). Geostatistics: modeling spatial uncertainty. Wiley,
New York.
Derycke, P.H. (1983). Economía y Planificación Urbana. Instituto de Estudios de
Administración Local, Madrid.
Figueroa Benavides, E. and Lever D., G. (1992-06). Determinants of housing prices in
Santiago: A hedonic estimation. Available at
https://repositorio.uchile.cl/handle/2250/128244
Gaetan, C., & Guyon, X. (2010). Spatial statistics and modeling (Vol. 90). New York:
Springer.
Griliches, Z. (1971). Price indices and quality change. Harvard U.P. Cambrige.
INEC, (2018). Encuesta de Empleo Desempleo y Subempleo Urbano. Retrieved
www.ecuadorencifras.gob.ec/enemdu-2018/.
Journel, A.G. and C.J. Huijbregts (1978). Mining Geostatistics. Academic Press, New
York.
Lever, G. (2000). Determinants of housing prices in Santiago: A Hedonic estimation.
Paper. Santiago, Chile: Editorial.
Martínez, M. G., Lorenzo, J. M. M. M., & Rubio, N. G. (2000). Kriging methodology for
regional economic analysis: Estimating the housing price in Albacete. International
Advances in Economic Research, 6(3), 438-450.
Matheron, G. (1962). Traite de geostatistique appliquee, Tome I. Memories du Bureau
de Recherches Geologiques et Minieres, 14. Editions Bureau de Recherches
Geologiques et Minieres, Paris.
Montero, J. (2004). The average price of the square meter of free housing: A
methodological approach from the perspective of Geostatistics. Estudios de
Economía Aplicada, 22(3),675-693.
Wackernagel, H. (1998). Multivariate Geostatistics. 2nd ed. Springer, Berlin